Метаболизм

Материал из Новая медицинская энциклопедии

Метаболизм — это высококоординированная и целенаправленная клеточная активность, обеспеченная участием многих взаимосвязанных ферментативных систем, включающая два неразрывных процесса: анаболизм и катаболизм.

Метаболизм выполняет три специализированные функции:

  • Энергетическая — снабжение клетки химической энергией;
  • Пластическая — синтез макромолекул как строительных блоков;
  • Специфическая — синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Анаболизм

Анаболизм — это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.


Также для биосинтеза некоторых веществ (жирные кислоты, холестерол) требуются богатые энергией атомы водорода — их источником является НАДФН. Молекулы НАДФН образуются в реакциях окисления глюкозо-6-фосфата в пентозном пути и оксалоацетата малик-ферментом. В реакциях анаболизма НАДФН передает свои атомы водорода на синтетические реакции и окисляется до НАДФ. Так формируется НАДФ-НАДФН-цикл.

Катаболизм


Катаболизм — расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии «перехватывается» коферментами окислительных реакций НАД и ФАД, некоторая часть сразу используется для синтеза АТФ.

Следует заметить, что атомы водорода, высвобождаемые в реакциях окисления веществ, могут использоваться клеткой только по двум направлениям:

  • на анаболические реакции в составе НАДФН;
  • на образование АТФ в митохондриях при окислении НАДН и ФАДН2.

Весь катаболизм условно подразделяется на три этапа:

I этап

Происходит в кишечнике (переваривание пищи) или в лизосомах при расщеплении уже ненужных молекул. При этом освобождается около 1 % энергии, заключенной в молекуле. Она рассеивается в виде тепла.

II этап

Вещества, образованные при внутриклеточном гидролизе или проникающие в клетку из крови, на втором этапе обычно превращаются в пировиноградную кислоту, ацетильную группу (в составе ацетил-S-КоА) и в некоторые другие мелкие органические молекулы. Локализация второго этапа — цитозоль и митохондрии.

Часть энергии рассеивается в виде тепла и примерно 13 % энергии вещества усваивается, то есть запасается в виде макроэргических связей АТФ.

III этап

Все реакции этого этапа идут в митохондриях. Ацетил-SКоА включается в реакции цикла трикарбоновых кислот и окисляется до углекислого газа. Выделенные атомы водорода соединяются с НАД и ФАД и восстанавливают их. После этого НАДН и ФАДН2 переносят водород в цепь дыхательных ферментов, расположенную на внутренней мембране митохондрий. Здесь в результате процесса под названием "окислительное фосфорилирование" образуется вода и главный продукт биологического окисления – АТФ.

Часть выделенной на этом этапе энергии молекулы рассеивается в виде тепла и около 46% энергии исходного вещества усваивается, т.е. запасается в связях АТФ и ГТФ.

Роль АТФ


Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемых макроэргическими. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ.

Все молекулы АТФ в клетке непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Существует три основных способа использования АТФ

  • биосинтез веществ;
  • транспорт веществ через мембраны;
  • изменение формы клетки и ее движение.

Эти процессы вкупе с процессом образования АТФ получили название АТФ-цикл.

Примечания

См. также