Гликоген

Материал из Новая медицинская энциклопедии

Гликоген является основной формой хранения глюкозы в животных клетках.

Гликоген — это легкоиспользуемый резерв энергии

Мобилизация гликогена (гликогенолиз)


Резервы гликогена используются по-разному в зависимости от функциональных особенностей клетки.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются.

В мышцах количество гликогена снижается обычно только во время физической нагрузки — длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой работы самих миоцитов. Таким образом, мышцы, как впрочем и остальные органы, используют гликоген только для собственных нужд.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови «целенаправленно» поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

  1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) — расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы;
  2. α(1,4)-α(1,4)-Глюкантрансфераза — фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и «открытая» доступная α1,6-гликозидная связь;
  3. Амило-α1,6-глюкозидаза, («деветвящий» фермент) — гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

Синтез гликогена

Гликоген способен синтезироваться почти во всех тканях, но наибольшие запасы гликогена находятся в печени и скелетных мышцах.

Накопление гликогена в мышцах отмечается в период восстановления после работы, особенно при приеме богатой углеводами пищи.

В печени гликоген накапливается только после еды, при гипергликемии. Такие отличия печени и мышц обусловлены наличием различных изоферментов гексокиназы, фосфорилирующей глюкозу в глюкозо-6-фосфат. Для печени характерен изофермент (гексокиназа IV), получивший собственное название — глюкокиназа. Отличиями этого фермента от других гексокиназ являются:

  • низкое сродство к глюкозе (в 1000 раз меньше), что ведет к захвату глюкозы печенью только при ее высокой концентрации в крови (после еды),
  • продукт реакции (глюкозо-6-фосфат) не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию. Это позволяет гепатоциту в единицу времени захватывать глюкозы больше, чем он может сразу же утилизовать.

Благодаря особенностям глюкокиназы гепатоцит эффективно захватывает глюкозу после еды и впоследствии метаболизирует ее в любом направлении. При нормальных концентрациях глюкозы в крови ее захват печенью не производится.

Непосредственно синтез гликогена осуществляют следующие ферменты:

Фосфоглюкомутаза

Фосфоглюкомутаза — превращает глюкозо-6-фосфат в глюкозо-1-фосфат.

Глюкозо-1-фосфат-уридилтрансфераза


Глюкозо-1-фосфат-уридилтрансфераза — фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата.

Гликогенсинтаза


Гликогенсинтаза — образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С1 УДФ-глюкозы к С4 концевого остатка гликогена.

Амило-α1,4-α1,6-гликозилтрансфераза


Амило-α1,4-α1,6-гликозилтрансфераза, «гликоген-ветвящий» фермент — переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием α1,6-гликозидной связи.

Синтез и распад гликогена реципрокны

Метаболизм гликогена в печени, мышцах и других клетках регулируется несколькими гормонами, одни из которых активируют синтез гликогена, а другие — распад гликогена. При этом в одной клетке не могут идти одновременно синтез и распад гликогена — это противоположные процессы с совершенно с разными задачами. Синтез и распад исключают друг друга или, по-другому, они реципрокны.

Активность обмена гликогена в зависимости от условий


Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты — они активны либо в фосфорилированной, либо в дефосфорилированной форме.

Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфора является АТФ:

  • фосфорилаза гликогена активируется после присоединения фосфатной группы;
  • синтаза гликогена после присоединения фосфата инактивируется.

Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина, глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

Например,

  • во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения;
  • при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

Способы активации синтазы гликогена

Аллостерическая активация гликогенсинтазы осуществляется глюкозо-6-фосфатом.

Еще одним способом изменения ее активности является химическая (ковалентная) модификация. При присоединении фосфата гликогенсинтаза прекращает работу, то есть она активна в дефосфорилированном виде. Удаление фосфата от ферментов осуществляют протеинфосфатазы. Активатором протеинфосфатаз выступает инсулин — в результате он повышает синтез гликогена.

Вместе с этим, инсулин и глюкокортикоиды ускоряют синтез гликогена, увеличивая количество молекул гликогенсинтазы.

Способы активации фосфорилазы гликогена

Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться тремя способами:

  • ковалентная модификация;
  • кальций-зависимая активация;
  • аллостерическая активация с помощью АМФ.

Ковалентная модификация фосфорилазы


При действии некоторых гормонов на клетку происходит активация фермента через аденилатциклазный механизм, который является так называемым каскадным регулированием. Последовательность событий в данном механизме включает:

  1. Молекула гормона (адреналин, глюкагон) взаимодействует со своим рецептором;
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок;
  3. G-белок активирует фермент аденилатциклазу;
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) — вторичный посредник (мессенджер);
  5. цАМФ аллостерически активирует фермент протеинкиназу А;
  6. Протеинкиназа А фосфорилирует различные внутриклеточные белки:
    • одним из этих белков является синтаза гликогена, ее активность угнетается,
    • другим белком — киназа фосфорилазы, которая при фосфорилировании активируется;
  7. Киназа фосфорилазы фосфорилирует фосфорилазу «b» гликогена, последняя в результате превращается в активную фосфорилазу «а»;
  8. Активная фосфорилаза «а» гликогена расщепляет α-1,4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные способы регуляции этого механизма. Например, после воздействия инсулина активируется фермент фосфодиэстераза, которая гидролизует цАМФ и, следовательно, снижает активность гликоген-фосфорилазы.

Кальций-зависимая активация


Некоторые гормоны влияют на углеводный обмен посредством кальций-фосфолипидного механизма. Активация ионами кальция заключается в активации киназы фосфорилазы не протеинкиназой, а ионами Ca2+ и кальмодулином. Этот путь работает при инициации кальций-фосфолипидного механизма. Такой способ оправдывает себя, например, при мышечной нагрузке, если гормональные влияния через аденилатциклазу недостаточны, но в цитоплазму под влиянием нервных импульсов поступают ионы Ca2+.

Аллостерическая активация

Также существует активация фосфорилазы гликогена с помощью АМФ — аллостерическая активация благодаря присоединению АМФ к молекуле фосфорилазы «b». Способ работает в любой клетке — при увеличении расхода АТФ и накоплении продуктов его распада.

Примечания

См. также